Recursive algorithms for computing the Cramer-Rao bound
نویسندگان
چکیده
Computation of the Cramer-Rao bound (CRB) on estimator variance requires the inverse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be computationally intractable when the number of unknown parameters is large. In this correspondence, we compare several iterative methods for approximating the CRB using matrix splitting and preconditioned conjugate gradient algorithms. For a large class of inverse problems, we show that nonmonotone Gauss–Seidel and preconditioned conjugate gradient algorithms require significantly fewer flops for convergence than monotone “bound preserving” algorithms.
منابع مشابه
Improved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملRecursive Algorithms for Computing the Cramer-Rao Bound [Correspondence] - Signal Processing, IEEE Transactions on
Computation of the Cramer-Rao bound (CRB) on estimator variance requires the inverse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be computationally intractable when the number of unknown parameters is large. In this correspondence, we compare several iterative methods for approximating the CRB using matrix splitting and preconditioned conjugate gradient al...
متن کاملتخمین جهت منابع با استفاده از زیرفضای کرونکر
This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...
متن کاملSauve and Fessler , \ Recursive Algorithms for Computing the Cr Bound
Computation of the Cramer-Rao bound (CRB) on estimator variance requires the inverse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be computationally intractable when the number of unknown parameters is large. In this note we compare several iterative methods for approximating the CRB using matrix splitting and preconditioned conjugate gradient algorithms. F...
متن کاملCramer-Rao Lower Bound Computation Via the Characteristic Function
The Cramer-Rao Lower Bound is widely used in statistical signal processing as a benchmark to evaluate unbiased estimators. However, for some random variables, the probability density function has no closed analytical form. Therefore, it is very hard or impossible to evaluate the Cramer-Rao Lower Bound directly. In these cases the characteristic function may still have a closed and even simple f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 45 شماره
صفحات -
تاریخ انتشار 1997